Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Investig Drugs ; : 1-12, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38676426

RESUMO

INTRODUCTION: Up to 40% of Primary biliary cholangitis (PBC) patients have a suboptimal response to Ursodeoxycholic acid (UDCA). Close to half of such patients show a remarkable improvement when additionally treated with Obeticholic acid (OCA) but have a dose-dependent increase of pruritus. This relative success of OCA, a first-in-class Farnesoid receptor (FXR) agonist, has positioned FXR as an attractive target for drug development. Novel candidates have since emerged, providing hope for this subgroup of patients who lack effective and safe treatments. AREAS COVERED: We discussed the role of bile acids in PBC pathogenesis and how the FXR agonists provide therapeutic value by affecting bile acid synthesis and transport. Novel FXR agonists undergoing pre-clinical and clinical trials for PBC were enlisted via literature search by including the terms 'FXR agonists,' 'FXR PBC,' 'PBC clinical trials' on PubMed, MEDLINE via Ovid, and Clinicaltrials.gov. EXPERT OPINION: Novel FXR agonists currently under investigation for PBC improve the disease surrogate markers in early trials. However, as with OCA, pruritus remains a concern with the newer drugs despite targeted chemical modifications to increase FXR specificity. Directing future resources toward studying the molecular mechanisms behind pruritus may lead to better drug design and efficacious yet safer drugs.

2.
EMBO J ; 42(14): e112845, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272163

RESUMO

The canonical autophagy pathway in mammalian cells sequesters diverse cytoplasmic cargo within the double membrane autophagosomes that eventually convert into degradative compartments via fusion with endolysosomal intermediates. Here, we report that autophagosomal membranes show permeability in cells lacking principal ATG8 proteins (mATG8s) and are unable to mature into autolysosomes. Using a combination of methods including a novel in vitro assay to measure membrane sealing, we uncovered a previously unappreciated function of mATG8s to maintain autophagosomal membranes in a sealed state. The mATG8 proteins GABARAP and LC3A bind to key ESCRT-I components contributing, along with other ESCRTs, to the integrity and imperviousness of autophagic membranes. Autophagic organelles in cells lacking mATG8s are permeant, are arrested as amphisomes, and do not progress to functional autolysosomes. Thus, autophagosomal organelles need to be maintained in a sealed state in order to become lytic autolysosomes.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Animais , Humanos , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mamíferos
3.
J Immunol ; 202(8): 2240-2253, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796179

RESUMO

Alpha-1 antitrypsin (AAT) is an acute phase protein that possesses immune-regulatory and anti-inflammatory functions independent of antiprotease activity. AAT deficiency (AATD) is associated with early-onset emphysema and chronic obstructive pulmonary disease. Of interest are the AATD nonsense mutations (termed null or Q0), the majority of which arise from premature termination codons in the mRNA coding region. We have recently demonstrated that plasma from an AATD patient homozygous for the Null Bolton allele (Q0bolton ) contains AAT protein of truncated size. Although the potential to alleviate the phenotypic consequences of AATD by increasing levels of truncated protein holds therapeutic promise, protein functionality is key. The goal of this study was to evaluate the structural features and anti-inflammatory capacity of Q0bolton-AAT. A low-abundance, truncated AAT protein was confirmed in plasma of a Q0bolton-AATD patient and was secreted by patient-derived induced pluripotent stem cell-hepatic cells. Functional assays confirmed the ability of purified Q0bolton-AAT protein to bind neutrophil elastase and to inhibit protease activity. Q0bolton-AAT bound IL-8 and leukotriene B4, comparable to healthy control M-AAT, and significantly decreased leukotriene B4-induced neutrophil adhesion (p = 0.04). Through a mechanism involving increased mRNA stability (p = 0.007), ataluren treatment of HEK-293 significantly increased Q0bolton-AAT mRNA expression (p = 0.03) and Q0bolton-AAT truncated protein secretion (p = 0.04). Results support the rationale for treatment with pharmacological agents that augment levels of functional Q0bolton-AAT protein, thus offering a potential therapeutic option for AATD patients with rare mutations of similar theratype.


Assuntos
Alelos , Códon sem Sentido , Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Adulto , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/imunologia , Fígado/metabolismo , Masculino , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/imunologia , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/imunologia
4.
Amyloid ; 25(3): 148-155, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30032658

RESUMO

Hereditary transthyretin amyloidosis (ATTR amyloidosis) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR amyloidosis, protein secreted from the liver aggregates and forms amyloid fibrils in downstream target organs, chiefly the heart and peripheral nervous system. Few animal models of ATTR amyloidosis exist and none recapitulate the multisystem complexity and clinical variability associated with disease pathogenesis in patients. Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and perhaps treat patients afflicted with highly variable multisystem diseases such as ATTR amyloidosis. Here, we fully characterize six representative iPSC lines from a library of previously reprogrammed iPSC lines and reprogrammable blood samples derived from ATTR amyloidosis patients. This unique resource, described herein, can be harnessed to study diverse disorder.


Assuntos
Neuropatias Amiloides Familiares/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...